Hi, John. Long-time listener, first-time caller... I have a model that says X is a function of three (independent) random variables:
X ~ normal(mu, sigma) / uniform(a,a+b) - beta(v,w)
and I also have N random samples of X. Can I use JAGS to estimate mu, sigma, a, b, v and w? Or is this problem outside its scope? Not sure if it's even possible.
My reply:
In other words, you want
x <- r / u - b
where
r ~ normal( rMean , rSD )
u ~ uniform( uLow , uHigh )
b ~ beta( bA , bB )
but the problem is that JAGS won't accept that sort of model specification.
One solution is to change to an equivalent hierarchical formalization:
x ~ normal( rMean/u-b , rSD/u )
u ~ uniform( uLow , uHigh )
b ~ beta( bA , bB )
This hierarchical form is directly implementable in JAGS. But be careful that in JAGS the normal is parameterized by precision, not SD, so you'll need to write x ~ dnorm( rMean/u-b , 1/(rSD/u)^2 ).
To demonstrate that the two forms are equivalent, here is a Monte Carlo sample generated in R from each formalization:
# Specify parameter values and sample size:
rMean=7 ; rSD=2
uLow=3 ; uHigh=5
bA=4 ; bB=3
N = 50000
# Sample x values your original way:
b = rbeta(N, bA,bB)
u = runif(N, uLow,uHigh)
r = rnorm(N, rMean,rSD)
x1 = r/u-b
# Sample x values a new way:
x2 = rep(0,N)
for ( i in 1:N ) {
b = rbeta(1, bA,bB)
u = runif(1, uLow,uHigh)
x2[i] = rnorm(1, rMean/u-b , rSD/u )
}
# Plot results:
layout(matrix(1:2,nrow=2))
xLim=range(c(x1,x2))
hist(x1,xlim=xLim,breaks=21)
text( mean(x1) , 0 , "+" , cex=2 )
hist(x2,xlim=xLim,breaks=21)
text( mean(x2) , 0 , "+" , cex=2 )
The result is shown below, where you can see that the original and new distributions are identical: